Effects of the surface structure and cluster bombardment on the self-sputtering of molybdenum
نویسندگان
چکیده
The understanding of different features of the sputtering of materials lies in understanding the factors contributing to the emission of atoms from a regular crystal structure at the surface. Although the sputtering of fcc crystals has received much attention, the database on bcc materials is still scarce. We use molecular dynamics simulations to study the self-sputtering of the (100), (110), (111) and (112) surfaces of molybdenum. Single atoms as well as Mo2 and Mo4 clusters are used as the irradiation projectiles, in the cluster energy range of 0.125–4 keV. Contrary to the usual assumption, enhanced (nonlinear) sputtering yields are observed for the cluster bombardments at both ends of the energy range studied. The enhancements can be explained with lower threshold energies for sputtering at low energies and with a decreased fraction of channelled projectile atoms in the kiloelectronvolt energy range.
منابع مشابه
Thermal Oxidation Times Effect on Structural and Morphological Properties of Molybdenum Oxide Thin Films Grown on Quartz Substrates
Molybdenum oxide (α-MoO)thin films were prepared on quartz and silicon substrates by thermal oxidation of Mo thin films deposited using DC magnetron sputtering method. The influence of thermal oxidation times ranging from 60-240 min on the structural and morphological properties of the preparedfilms was investigated using X-ray diffraction, Atomic force microscopy and Fourier transform infrared...
متن کاملStructural, Electrical and Optical Properties of Molybdenum Oxide Thin Films Prepared by Post-annealing of Mo Thin Films
Molybdenum thin films with 50 and 150 nm thicknesses were deposited on silicon substrates, using DC magnetron sputtering system, then post-annealed at different temperatures (200, 325, 450, 575 and 700°C) with flow oxygen at 200 sccm (standard Cubic centimeter per minute). The crystallographic structure of the films was obtained by means of x-ray diffraction (XRD) analysis. An atomic force micr...
متن کاملSimulation of Fabrication toward High Quality Thin Films for Robotic Applications by Ionized Cluster Beam Deposition
The most commonly used method for the production of thin films is based on deposition of atoms or molecules onto a solid surface. One of the suitable method is to produce high quality metallic, semiconductor and organic thin film is Ionized cluster beam deposition (ICBD), which are used in electronic, robotic, optical, optoelectronic devices. Many important factors such as cluster size, cluster...
متن کاملStructural, Electrical and Optical Properties of Molybdenum Oxide Thin Films Prepared by Post-annealing of Mo Thin Films
Molybdenum thin films with 50 and 150 nm thicknesses were deposited on silicon substrates, using DC magnetron sputtering system, then post-annealed at different temperatures (200, 325, 450, 575 and 700°C) with flow oxygen at 200 sccm (standard Cubic centimeter per minute). The crystallographic structure of the films was obtained by means of x-ray diffraction (XRD) analysis. An atomic force micr...
متن کاملMolecular Dynamics Simulation of Al Energetic Nano Cluster Impact (ECI) onto the Surface
On the atomic scale, Molecular Dynamic (MD) Simulation of Nano Al cluster impact on Al (100) substrate surface has been carried out for energies of 1-20 eV/atom to understand quantitatively the interaction mechanisms between the cluster atoms and the substrate atoms. The many body Embedded Atom Method (EAM) was used in this simulation. We investigated the maximum substrate temperature Tmax and...
متن کامل